Quasiparticle relaxation in optically excited high-Q superconducting resonators.
نویسندگان
چکیده
The quasiparticle relaxation time in superconducting films has been measured as a function of temperature using the response of the complex conductivity to photon flux. For tantalum and aluminum, chosen for their difference in electron-phonon coupling strength, we find that at high temperatures the relaxation time increases with decreasing temperature, as expected for electron-phonon interaction. At low temperatures we find in both superconducting materials a saturation of the relaxation time, suggesting the presence of a second relaxation channel not due to electron-phonon interaction.
منابع مشابه
Superconducting Films for Absorber-Coupled MKID Detectors for Sub-Millimeter and Far-Infrared Astronomy
We describe measurements of the properties, at dc, gigahertz, and terahertz frequencies, of thin (10 nm) aluminum films with 10 normal state sheet resistance. Such films can be applied to construct microwave kinetic inductance detector arrays for submillimeter and far-infrared astronomical applications in which incident power excites quasiparticles directly in a superconducting resonator that i...
متن کاملDielectric losses in multi-layer Josephson junction qubits
We have measured the excited state lifetimes in Josephson junction phase and transmon qubits, all of which were fabricated with the same scalable multi-layer process. We have compared the lifetimes of phase qubits before and after removal of the isolating dielectric, SiNx, and find a fourfold improvement of the relaxation time after the removal. Together with the results from the transmon qubit...
متن کاملEnergy decay in superconducting Josephson-junction qubits from nonequilibrium quasiparticle excitations.
We calculate the energy decay rate of Josephson qubits and superconducting resonators from nonequilibrium quasiparticles. The decay rates from experiments are shown to be consistent with predictions based on a prior measurement of the quasiparticle density n(qp) = 10/microm(3), which suggests that nonequilibrium quasiparticles are an important decoherence source for Josephson qubits. Calculatio...
متن کاملSubgap features due to quasiparticle tunneling in quantum dots coupled to superconducting leads
We present a microscopic theory of transport through quantum dot setups coupled to superconducting leads. We derive a master equation for the reduced density matrix to lowest order in the tunneling Hamiltonian and focus on quasiparticle tunneling. For high enough temperatures transport occurs in the subgap region due to thermally excited quasiparticles, which can be used to observe excited stat...
متن کاملObservation of a superconducting gap in boron-doped diamond by laser-excited photoemission spectroscopy.
We investigate the temperature (T)-dependent low-energy electronic structure of a boron-doped diamond thin film using ultrahigh resolution laser-excited photoemission spectroscopy. We observe a clear shift of the leading edge below T=11 K, indicative of a superconducting gap opening (Delta approximately 0.78 meV at T=4.5 K). The gap feature is significantly broad and a well-defined quasiparticl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 100 25 شماره
صفحات -
تاریخ انتشار 2008